spark_auto_mapper_fhir.value_sets.statistics_code

Module Contents

Classes

StatisticsCodeCode

StatisticsCode

StatisticsCodeCodeValues

The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements

class spark_auto_mapper_fhir.value_sets.statistics_code.StatisticsCodeCode(value)

Bases: spark_auto_mapper_fhir.value_sets.generic_type.GenericTypeCode

StatisticsCode From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

The statistical operation parameter -“statistic” codes.

Parameters

value (spark_auto_mapper.type_definitions.defined_types.AutoMapperTextInputType) –

codeset :spark_auto_mapper_fhir.fhir_types.uri.FhirUri = http://terminology.hl7.org/CodeSystem/observation-statistics
class spark_auto_mapper_fhir.value_sets.statistics_code.StatisticsCodeCodeValues

The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Average

The [maximum](https://en.wikipedia.org/wiki/Maximal_element) value of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Maximum

The [minimum](https://en.wikipedia.org/wiki/Minimal_element) value of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Minimum

The [number] of valid measurements over the stated period that contributed to the other statistical outputs. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Count

The total [number] of valid measurements over the stated period, including observations that were ignored because they did not contain valid result values. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

TotalCount

The [median](https://en.wikipedia.org/wiki/Median) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Median

The [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

StandardDeviation

The [sum](https://en.wikipedia.org/wiki/Summation) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Sum

The [variance](https://en.wikipedia.org/wiki/Variance) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Variance

The 20th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

LowerQuartile

The upper [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

UpperQuartile

The difference between the upper and lower [Quartiles](https://en.wikipedia.org/wiki/Quartile) is called the Interquartile range. (IQR = Q3-Q1) Quartile deviation or Semi-interquartile range is one-half the difference between the first and the third quartiles. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

QuartileDeviation

The lowest of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Skew

Kurtosis is a measure of the “tailedness” of the probability distribution of a real-valued random variable. Source: [Wikipedia](https://en.wikipedia.org/wiki/Kurtosis). From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Kurtosis

Linear regression is an approach for modeling two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variables. Source: [Wikipedia](https://en.wikipedia.org/wiki/Simple_linear_regression) This Statistic code will return both a gradient and an intercept value. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml

Regression