spark_auto_mapper_fhir.value_sets.statistics_code
¶
Module Contents¶
Classes¶
StatisticsCode |
|
The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements |
- class spark_auto_mapper_fhir.value_sets.statistics_code.StatisticsCodeCode(value)¶
Bases:
spark_auto_mapper_fhir.value_sets.generic_type.GenericTypeCode
StatisticsCode From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
The statistical operation parameter -“statistic” codes.
- Parameters
value (spark_auto_mapper.type_definitions.defined_types.AutoMapperTextInputType) –
- codeset :spark_auto_mapper_fhir.fhir_types.uri.FhirUri = http://terminology.hl7.org/CodeSystem/observation-statistics¶
- class spark_auto_mapper_fhir.value_sets.statistics_code.StatisticsCodeCodeValues¶
The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Average¶
The [maximum](https://en.wikipedia.org/wiki/Maximal_element) value of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Maximum¶
The [minimum](https://en.wikipedia.org/wiki/Minimal_element) value of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Minimum¶
The [number] of valid measurements over the stated period that contributed to the other statistical outputs. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Count¶
The total [number] of valid measurements over the stated period, including observations that were ignored because they did not contain valid result values. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- TotalCount¶
The [median](https://en.wikipedia.org/wiki/Median) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Median¶
The [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- StandardDeviation¶
The [sum](https://en.wikipedia.org/wiki/Summation) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Sum¶
The [variance](https://en.wikipedia.org/wiki/Variance) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Variance¶
The 20th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- LowerQuartile¶
The upper [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- UpperQuartile¶
The difference between the upper and lower [Quartiles](https://en.wikipedia.org/wiki/Quartile) is called the Interquartile range. (IQR = Q3-Q1) Quartile deviation or Semi-interquartile range is one-half the difference between the first and the third quartiles. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- QuartileDeviation¶
The lowest of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Skew¶
Kurtosis is a measure of the “tailedness” of the probability distribution of a real-valued random variable. Source: [Wikipedia](https://en.wikipedia.org/wiki/Kurtosis). From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Kurtosis¶
Linear regression is an approach for modeling two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variables. Source: [Wikipedia](https://en.wikipedia.org/wiki/Simple_linear_regression) This Statistic code will return both a gradient and an intercept value. From: http://terminology.hl7.org/CodeSystem/observation-statistics in valuesets.xml
- Regression¶